
The Pigeonhole Principle : Obvious… But Is It? 

What is the PigeonHole Principle? 

At first glance, the Pigeonhole Principle might sound like a trivial observation: 

“If you place more pigeons than pigeonholes, at least one pigeonhole must contain 
more than one pigeon.” 

Simple? Yes. Obvious? Maybe. But beneath this plain statement lies a surprisingly powerful 
mathematical tool. Something that forms the foundation of a wide range of results in number 
theory, computer science, geometry, and combinatorics. 

Formally, the basic version of the Pigeonhole Principle can be stated as: 

“If n+1 or more objects are placed into n containers, then at least one 
container must contain more than one object.” 

It’s a principle of inevitability. When resources are limited and constraints are tight, repetition is 
guaranteed. 

What makes the Pigeonhole Principle remarkable isn’t its complexity, but its inevitability. It 
doesn’t require algebra, calculus, or clever construction. It simply asserts that some things must 
collide, and that’s enough to prove deep and unexpected results. 

 

 

 

 

 

 

 

 



Why Should You Care? 

To appreciate how useful the Pigeonhole Principle (PHP) can be, consider the following simple 
question: 

Problem 1: Birth Months 

In any group of 13 people, must at least two of them share a birth month? 

At first glance, this may seem like it needs probability or some clever counting trick. But in truth, 
it’s a direct application of PHP. There are only 12 months, and we have 13 people. So when we 
try to assign birth months to each person, at least one month must be assigned to more than 
one person. Done! 

Let’s take a slightly more whimsical version: 

Problem 2: Matching Socks 

You have a drawer containing only red, blue, and green socks, all mixed up. If you pull out 
4 socks blindly, can you be sure of getting at least one matching pair? 

Here, the “pigeonholes” are the 3 colors, and the “pigeons” are the 4 socks. With only 3 color 
categories and 4 items, at least two must fall into the same color, i.e., a guaranteed match. 

These examples may seem obvious once you know the trick, but that’s the essence of PHP: it 
turns impossibility into inevitability. 

In this exposition, we’ll explore more such examples where the Pigeonhole Principle helps us 
prove the existence of repetition, patterns, or coincidences, even when we have no idea 
where or what they are. 

 

 

 

 
 



It’s Everywhere : Real-Life and Math Examples 

Application 1: A Party of Six People 

Let’s consider a social scenario: 

Claim: In any party of 6 people, there must exist: 

●​ a trio who all know each other, or 
●​ a trio who are all mutual strangers. 

At first, this might sound like a bold social observation, but it’s actually a beautiful example of 
Ramsey Theory in action, and its proof relies on nothing more than the Pigeonhole Principle 
and a bit of clever reasoning. 

Visualizing the Problem 

We can model this situation using a graph: 

●​ Each person is a node. 
●​ Draw an edge between every pair of people. 

○​ If two people know each other, color the edge blue. 
○​ If two people are strangers, color the edge red. 

So this becomes a complete graph with 6 vertices where each edge is colored either red or 
blue. 

 

 



The Pigeonhole Moment 

Pick any person in the group — say, Alice. She is connected to 5 others, so there are 5 edges 
coming out from her. Each of these edges is either red or blue. 

By the Pigeonhole Principle, at least 3 of these edges must be the same color 
(since there are only two colors and 5 edges). Without loss of generality, let’s 
assume there are 3 blue edges, meaning Alice knows 3 people: Bob, Carol, and 
Dave. 

           

Now consider the triangle formed by Bob, Carol, and Dave: 

●​ If any of the edges among them is blue, say Bob knows Carol, then we now have a 
triangle of people who all know each other: Alice–Bob–Carol. 

 

●​ If none of them know each other (i.e., all edges are red), then Bob, Carol, and Dave 
form a trio of mutual strangers. 



 

Either way, we’re guaranteed to find: 

●​ a triangle of mutual friends, or 
●​ a triangle of mutual strangers. 

Why This Matters 

This result is a special case of a deeper concept in Ramsey Theory, which broadly states: 

In any large enough structure, some kind of order or pattern is guaranteed to 
emerge. 

Here, our "structure" is a group of people, and the "pattern" is a guaranteed triangle of mutual 
relations, regardless of how connections are arranged. 

Check out the graph yourself here. 

Application 2: The Birthday Paradox 

Claim: In a room of just 23 people, there’s a greater than 50% chance that at least 
two people share the same birthday. 

At first glance, this seems counterintuitive. After all, there are 365 possible birthdays (ignoring 
leap years), so how can a match be so likely with only 23 people? 

While the full result relies on probability theory, we can build intuition for it using the 
Pigeonhole Principle. 

 

 

https://thundermj2003.github.io/SoME4-Submission/ramsey_example/


A Simpler Version 

Let’s first ask a more straightforward question: 

How many people are required to guarantee that at least two share a 
birthday? 

Now the Pigeonhole Principle gives a simple answer: 

If we have 366 people, and only 365 possible birthdays, then by PHP, at least two people 
must share a birthday. This is a guaranteed match. 

This guaranteed case is not surprising. What is surprising is how quickly the probability 
climbs well before reaching 366. 

Calculating the Probability 

To calculate the probability that at least two people share a birthday among n people, it's easier 
to compute the complement: 

The probability that all birthdays are unique, and then subtract that from 1. 

Let’s assume: 

●​ 365 days in a year (ignoring leap years), 
●​ Birthdays are uniformly distributed and independent. 

We want to compute: 

P(no shared birthday) =  
365
365 · 364

365 · 363
365 ··· 343

365

That is: 

P(no shared birthday) =  
𝑘=0

22

∏ 365−𝑘
365

Using a calculator, this becomes approximately: 

P(no shared birthday)   ≈  0. 4927

So the probability that at least two people share a birthday is: 

P (at least two people share) = 1 - P(no shared birthday)   ≈  1 − 0. 4927 =  0. 5073



This means there is over 50% chance with just 23 people that at least 2 of them share a 
birthday. 

 

You can check the above graph here. 

Bridging PHP and Probability 

The actual paradox is about likelihood, not certainty. But PHP still plays a key role in helping us 
understand it: 

●​ There are fewer birthday slots (365) than the vast number of possible person-pairs 
even in small groups. 

●​ Each new person added to the room increases the chance that they “collide” into an 
already-occupied birthday slot, just like adding more pigeons to fixed pigeonholes. 

As the group size grows, these collisions become more and more likely, and by the time we 
reach 23 people, the probability of no collisions drops below 50%. 

So while PHP only gives us certainty with 366 people, it reveals the fundamental inevitability 
of repeated birthdays, which is a key to understanding why the paradox is not so paradoxical 
after all. 

https://thundermj2003.github.io/SoME4-Submission/birthday_paradox/


Application 3: Modular Arithmetic and Remainders 

Let’s consider the following classic number theory claim: 

Claim: Given any  integers, at least two of them will have the same 𝑛 + 1
remainder when divided by . 𝑛

This might sound technical at first, but it’s really just another way of stating the Pigeonhole 
Principle, in the language of modular arithmetic. 

Understanding the Claim 

When we divide an integer by , the possible remainders are: 𝑛

 0,  1,  2,  .  .  .  ,  𝑛 − 1

So there are exactly n possible remainders. 

Now, suppose you are given  different integers. 𝑛 + 1

When each of these is divided by , they each produce a remainder. But since there are only  𝑛 𝑛
possible remainders and  numbers, at least two of them must share the same 𝑛 + 1
remainder, by the Pigeonhole Principle. 

Why This Matters 

This simple idea shows up in many important mathematical tools: 

●​ Hash functions (in computer science) rely on distributing values into a fixed number of 
“buckets,” where collisions are unavoidable. 

●​ Congruences and modular reasoning often use this kind of logic to prove the 
existence of patterns without constructing them. 

Once again, PHP reminds us: if more items than categories are distributed, overlap is 
unavoidable, even in the rigid world of number theory. 

Application 4: Close Points in a Square 

Claim: If you place 5 points anywhere inside a square of side length 2, then at 
least two of them will be within a distance of √2 from each other. 

At first, this might not seem connected to the Pigeonhole Principle, but the key idea is to 
partition the space into “pigeonholes” and then argue about how “pigeons” (the points) are 
forced into them. 



Partitioning the Square 

Let’s divide the square into four smaller squares, each of side length 1, like so: 

 

Each small square is a 1 × 1 square. Now we place 5 points anywhere inside the big 2 × 2 
square. 

 

There are 4 regions (the small squares), and 5 points. 

By the Pigeonhole Principle, at least one of these small squares must contain at 
least two points. 

Why That Matters 

Now, let’s consider any two points that lie inside the same 1 × 1 square. 

The maximum distance between any two points in a square of side 1 is the length of its 
diagonal, which is: 



Diagonal length =  12 + 12 =  2

So, if two points lie in the same 1 × 1 square, then the distance between them is at most √2. 

Therefore, among any 5 points placed in a square of side 2, at least two points are within a 
distance of √2. 

Why This Is Elegant 

This example shows that even in continuous geometric spaces, finite pigeonholes (the 
sub-squares) can force points into close proximity. The trick is in how we break up the space. 

This idea forms the basis for more advanced geometric arguments in: 

●​ Computational geometry (e.g., closest pair problems) 
●​ Packing and covering arguments 
●​ Ramsey-type results in Euclidean space 

It’s also a great reminder that the Pigeonhole Principle isn’t just about counting — it’s about 
structural inevitability. 

You can try it for yourself here. 

Can We Push It Further? The Power Of Generalization 

So far, we’ve used the Pigeonhole Principle to prove that some overlap must occur when 
more items are placed into fewer categories. But the principle can be pushed even further. 

The Generalized Pigeonhole Principle 

If N objects are placed into k boxes, then at least one box contains at least 

​ objects. ⌈ 𝑁
𝑘( )⌉

This version tells us not just that a collision occurs — but how bad the collision must be. 

Example: Exam Grading Buckets 

Suppose a professor divides scores into 4 grade brackets: A, B, C, D. If there are 13 students, 
then: 

 ⌈13/4​⌉ = 4

So at least one grade bracket must contain at least 4 students. No matter how cleverly the 
scores are distributed, inequality is unavoidable. 

https://thundermj2003.github.io/SoME4-Submission/pigeonhole_geometry/


Applications in the Wild 

Dirichlet’s Approximation Theorem (Brief Mention) 

This powerful theorem in number theory uses the generalized PHP to show: 

For any irrational number α, and any integer N, there exist integers p and q such 
that: 

 , with  ​α − 𝑝
𝑞

|| || < 1
𝑞𝑁 1 ≤ 𝑞 ≤ 𝑁.

The proof partitions the unit interval into N equal parts and applies PHP to fractional parts of 
multiples of α. 

It’s an elegant bridge between discrete structure and real number approximation. 

Computer Science: Hashing and Collisions 

Hash functions assign data (like strings or files) to a fixed range of values, like putting many 
keys into a small number of boxes. 

●​ If N > k, where N is the number of inputs and k is the number of possible hash values, 
then collisions are unavoidable. 

●​ Generalized PHP can help predict how severe those collisions might be, which is vital in 
designing hash tables, load balancing, and cryptography. 

Proofs by Contradiction 

The Generalized PHP often shows up in existence proofs: 

●​ Show that a certain condition can't be true because it would require more boxes than 
available categories. 

●​ For example: proving the minimum number of friends someone must have in a room 
using degree arguments in graphs. 

From Simple to Deep 

While the original principle feels like common sense, this generalized form reveals just how 
broad its reach is, from birthdays to number theory, and from exam scores to algorithms. 

At its core, it reminds us of a profound truth in mathematics: 

Structure emerges when freedom is constrained. 



So What’s The Big Deal? 

At first glance, the Pigeonhole Principle might seem almost too simple to be powerful. After all, it 
just says: “If you have more items than containers, some containers get more than one.” Isn’t 
that just common sense? 

Yes — and that’s precisely its power. 

Despite its simplicity, the Pigeonhole Principle underlies many deep and surprising results in 
mathematics. What makes it especially valuable is that it enables non-constructive existence 
proofs, that guarantee something must exist without telling us exactly where or what it is. 

From Trivial Truth to Profound Insight 

The examples we’ve seen, from shared birthdays to remainders in number theory, and from 
geometric distances to social patterns, all highlight one thing: 

Structure is inevitable when constraints are tight enough. 

That idea is incredibly useful in mathematics, where sometimes we don’t need to find a 
duplicate, match, or collision, instead we just need to know that one must exist. 

Real-World Impact 

The Pigeonhole Principle (and its generalizations) appears in: 

●​ Computer science, where hash collisions are guaranteed under certain conditions.​
 

●​ Information theory, where the compression of data below entropy bounds must lead to 
overlap.​
 

●​ Ramsey theory, where complete chaos is impossible, and some order must emerge.​
 

Even when we don’t know how to construct a solution, PHP gives us a kind of mathematical 
certainty: 

You can’t avoid a pattern forever. 

 

 



A Principle of Inevitability 

Perhaps the most beautiful thing about the Pigeonhole Principle is that it captures a universal 
idea: 

With limited resources, repetition is not just likely, but rather guaranteed. 

It reminds us that mathematical truth doesn’t always require complicated machinery. 
Sometimes, the simplest observations yield the most profound consequences. 

From Pigeons to Proof 

The Pigeonhole Principle is a shining example of how simple truths can lead to profound 
insights. What begins as a seemingly obvious observation, more objects than containers 
means some container must hold more than one, unfolds into a versatile tool used across 
mathematics and computer science. 

From ensuring shared birthdays and duplicate remainders to proving the inevitability of social 
patterns or geometric closeness, the principle shows up in surprising places. Its strength lies in 
its generality and inevitability: even without knowing where a pattern is, we can be confident 
that it must be there. 

In many ways, mathematics is the art of noticing structure, especially in places where chaos 
appears to reign. The Pigeonhole Principle teaches us that patterns are unavoidable, not 
because of luck or coincidence, but because of logic and necessity. 

As we’ve seen, even the most elementary ideas can unlock deep understanding. And that’s the 
beauty of discrete mathematics: sometimes, thinking like a pigeon is all it takes. 
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